Correction: The Wobbler Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Displays Hippocampal Hyperexcitability, and Reduced Number of Interneurons, but No Presynaptic Vesicle Release Impairments
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60) and presymptomatic (P17-P21) wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more details of the early pathophysiology in asymptomatic animals, and studies like the present may facilitate the development of novel treatment strategies for earlier intervention in ALS patients in the future.
منابع مشابه
Reduced GABAergic inhibition explains cortical hyperexcitability in the wobbler mouse model of ALS.
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease of the central nervous system. Symptomatic and presymptomatic ALS patients demonstrate cortical hyperexcitability, which raises the possibility that alterations in inhibitory gamma-aminobutyric acid (GABA)ergic system could underlie this dysfunction. Here, we studied the GABAergic system in cortex using patch-clamp record...
متن کاملVPS54 and the wobbler mouse
The wobbler mouse is an animal model for human motor neuron disease, such as amyotrophic lateral sclerosis (ALS). The spontaneous, recessive wobbler mutation causes degeneration of upper and lower motor neurons leading to progressive muscle weakness with striking similarities to the ALS pathology. The wobbler mutation is a point mutation affecting Vps54, a component of the Golgi-associated retr...
متن کاملLoss of Vps54 Function Leads to Vesicle Traffic Impairment, Protein Mis-Sorting and Embryonic Lethality
The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic le...
متن کاملCalretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1G93A mouse model of ALS
Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cor...
متن کاملThe Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis
The development of hyperexcitability in amyotrophic lateral sclerosis (ALS) is a well-known phenomenon. Despite controversy as to the underlying mechanisms, cortical hyperexcitability appears to be closely related to the interplay between excitatory corticomotoneurons and inhibitory interneurons. Hyperexcitability is not a static phenomenon but rather shows a pattern of progression in a spatiot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013